visualization_lecture

Gestalt theory of data visualization

Examples

import matplotlib.pyplot as plt
import numpy as np
# Sample data
x = np.random.rand(50)
y = np.random.rand(50)
colors = np.random.choice(['red', 'blue'], size=50)
plt.scatter(x, y, c=colors)
plt.title('Scatter Plot with Similarity Principle')
plt.show()
import matplotlib.pyplot as plt
# Sample data
categories = ['A', 'B', 'C', 'D']
values1 = [5, 7, 3, 4]
values2 = [6, 8, 4, 5]
x = np.arange(len(categories))
width = 0.35
plt.bar(x - width/2, values1, width, label='Group 1')
plt.bar(x + width/2, values2, width, label='Group 2')
plt.xticks(x, categories)
plt.title('Bar Chart with Proximity Principle')
plt.legend()
plt.show()
import matplotlib.pyplot as plt
# Sample data
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.title('Line Graph with Continuity Principle')
plt.show()
import matplotlib.pyplot as plt
# Sample data
sizes = [30, 20, 25, 15]
labels = ['A', 'B', 'C', 'D']
plt.pie(sizes, labels=labels, startangle=90)
plt.title('Pie Chart with Closure Principle')
plt.show()
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# Sample data
data = np.random.rand(10, 10)
sns.heatmap(data, cmap='coolwarm')
plt.title('Heatmap with Figure-Ground Principle')
plt.show()

🤔❓ Applications to modern data science

Visual perception principles

Use of colour in data visualization

🎮 Colour activity

💡 Glyphs and visual variables

Change blindness

Optical illusions

🤔❓Retinal variables

Associative vs. Dissociative visualizations

Vibratory effect in point representations

vibration

Orientation variation

page 14 of PDF here - Semiology of Graphics by Jacques Bertin

chaos in orientation

Ancient data science

Shape variation

Resources